PLANITOP INTONACO ARMATO THE NEW WAY TO STRENGTHEN STRUCTURES

PLANITOP INTONACO ARMATO

Application of **PLANITOP INTONACO ARMATO** by spray

INNOVATIVE CEMENT-FREE MORTAR WITH DIFFUSED MICRO REINFORCEMENT FOR STRUCTURAL STRENGTHENING OF MASONRY WITHOUT STRENGTHENING MESH.

Cashdard

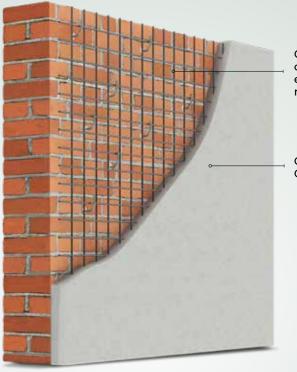
CONTAINS

30%

P-CS I

MAPE

onacol

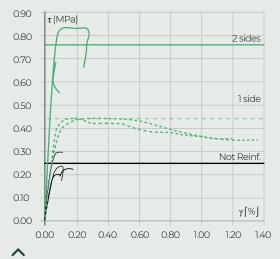


Enlargement of the fibres in **PLANITOP INTONACO ARMATO**

WHY YOU SHOULD USE IT:

- > Performance properties comparable with reinforced render
- > No strengthening mesh required
- > No mechanical connectors required
- > No significant increase in stiffness
- > No significant increase in mass
- > High ductility
- Considerable increase in shear and tensile strength of masonry
- > Rapid application
- > May be applied with hand tools or with a rendering machine
- > No corrosion phenomenon

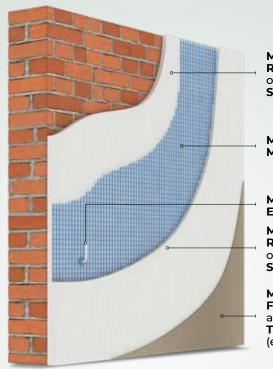
> TOTAL THICKNESS 4 ÷ 6 cm



Galvanized or stainless steel electro-welded mesh

Cementitious Grout

TRADITIONAL REINFORCED RENDER



This type of technique has problems that should not be underestimated:

- considerable **increase in stiffness**: irregular distribution of loads / stresses
- considerable increase in mass (weight of intervention ≈ 100 kg/m²): irregular distribution of loads / stresses
- **difficulty** in handling and applying electrowelded mesh
- transversal connectors required
- corrosion of the mesh

Stress-deformation curves: single-wythe tuff masonry with traditional reinforced concrete (galvanized mesh)

> TOTAL THICKNESS 3 ÷ 5 cm

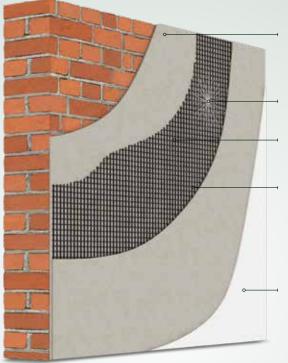
MAPEWALL RENDER & STRENGTHEN or MAPE-ANTIQUE STRUTTURALE NHL

MAPENET EM 30 or MAPENET EM 40

MAPENET EM-CONNECTOR MAPEWALL RENDER & STRENGTHEN or MAPE-ANTIQUE STRUTTURALE NHL

MAPE-ANTIQUE FC (internal use) and SILANCOLOR TONACHINO (external use)

CRM - COMPOSITE REINFORCED MORTARS



Unlike the technique of applying reinforced render, CRM systems have the following characteristics:

- reduction in stiffness compared with using electro-welded mesh
- increase in mass (weight of intervention ≈ 65 kg/m²): irregular distribution of loads / stresses
- easier handling and application of fibre mesh
- transversal connectors required
- no corrosion phenomenon

Stress-deformation curves: single-wythe tuff masonry with lime-based mortar and A.R. glass fibre mesh (Mapei CRM)

> TOTAL THICKNESS 1 ÷ 1.5 cm

PLANITOP HDM MAXI or HDM RESTAURO

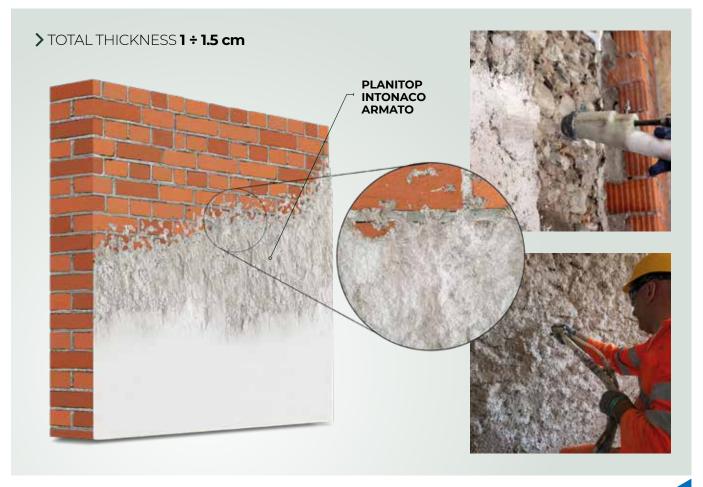
MAPEWRAP C/G/B FIOCCO

MAPEGRID G220/B250

PLANITOP HDM MAXI or HDM RESTAURO

MAPE-ANTIQUE FC (internal use) and SILANCOLOR TONACHINO (external use)

FRCM - FIBER REINFORCED CONCRETE MATRIX



Unlike the technique of applying reinforced render, FCRM systems have the following characteristics:

- significant reduction in stiffness
- considerable reduction in mass (weight of intervention ≈ 28 kg/m²): intervention has little impact on overall geometry
- easier handling and application of fibre mesh
- transversal connectors not always required
- no corrosion phenomenon

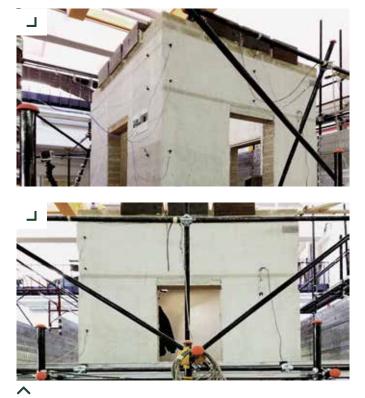
Stress-deformation curves: single-wythe tuff masonry with lime-based mortar and A.R. glass fibre mesh (Mapei FRCM)

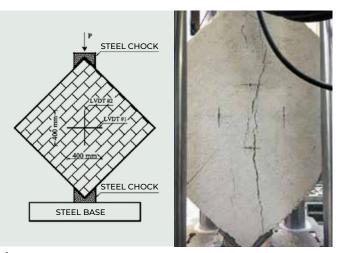
PLANITOP INTONACO ARMATO

PLANITOP INTONACO ARMATO

The innovative technology of **PLANITOP INTONACO ARMATO** offers the following advantages:

- no significant increase in stiffness
- no significant increase in mass (weight of intervention ≈ 28 kg/m²)
- reinforcement mesh not required
- transversal connectors not required
- no corrosion phenomenon
- lower application time


Stress-deformation curves: single-wythe tuff masonry with lime-based mortar with "micro-structural reinforcement" (PLANITOP INTONACO ARMATO)


NEW

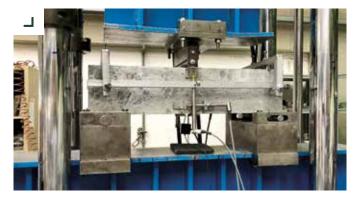
EXPERIMENTAL TESTING ON MASONRY PANELS AND STRUCTURES

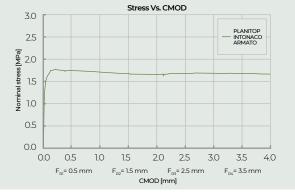
"Federico II" University of Naples, Department of Structural Engineering and Architecture (DiSt)

METRICS project (MEtodologie e Tecnologie per la gestione e Rlqualificazione dei Centri Storici e degli edifici di pregio - Methods and technologies for the management and redevelopment of old town centres and listed buildings): STRESS DISTRICT – Testing of scale 1:2 masonry building on a vibrating table.

Diagonal compression tests on masonry panels

Results of tests to determine the multiplication factor (t = 280 mm)


Sample	Type of strengthening	V _{med} [kN]	τ _{max, m} [MPa]	Δτ _{max, m} [%]	(\u03c7_{max, m}) [-]	G _m [MPa]	ΔG _m [%]	Cc (G) [-]
Р	-	215	0.46	-	1.00	1270	-	1.00
P(PIA)**	PLANITOP INTONACO ARMATO	485	0.96	110%	2.10	3256	156%	2.56


P(PIA)** walls strengthened on both faces

MECHANICAL CHARACTERISATION AS FRC (Fibre Reinforced Concrete)

University of Brescia, Department of Civil Engineering, Architecture, Territory, the Environment and Mathematics (DICATAM)

^

Performance characteristics of **PLANITOP INTONACO ARMATO**

Performance characteristic	Test method	Performance	u.m.
Compressive strength after 28 days	EN 1015-11	>15	N/mm ²
Adhesion to substrate (brickwork)	EN 1015-12	≥ 0.8 failure mode (FP) = B	N/mm ²
Compressive modulus of elasticity	EN 13412	8	GPa
Average residual flexural strength: - CMOD 1 = 500 µm: - CMOD 2 = 1,500 µm: - CMOD 3 = 2,500 µm: - CMOD 4 = 3,500 µm:	EN 14651	f _{№1} 1.75 f _{№2} 1.68 f _{№3} 1.70 f _{№4} 1.69	MPa

Results of tests to measure residual flexural strength according to EN 14651

welcomeadv.it

HEAD OFFICE MAPEI SpA Via Cafiero, 22 - 20158 Milan Tel. +39-02-37673.1 Fax +39-02-37673.214 Internet: www.mapei.com E-mail: mapei@mapei.it

